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Abstract—The paper is devoted to the study of wave propagation through materials with internal state
variables under two main assumptions: finite speed of propagation and symmetry of acceleration waves.
Additional constitutive assumptions are also used: heat flux does not depend on the temperature gradient and
the time-derivatives of internal state variables are linear functions of the temperature gradient. Under all
these hypotheses, in the neighborhood of a strong equilibrium state, one finds four real and symmetric
possible acceleration waves, at least two of them being coupled waves, and heat flux results an internal state
variable. All these results are obtained in the general three-dimensional case. As an illustration, the isotropic
linear theory is considered, where both acceleration and shock waves are treated.

INTRODUCTION

Wave propagation through materials for which the heat flux is determined by a constitutive
equation of Maxwell-Cattaneo type, has been studied by several authors, from different points of
view. In the frame-work of non-linear theories one generally finds that acceleration waves are not
symmetric with respect to the propagation direction unless additional hypotheses are laid down.
(See Gurtin and Pipkin [3], Kosifiski and Perzyna[2]; for additional comments see Suliciu{4].)

The authors of the present work do consider that symmetry of acceleration waves is a
requirement of a physical nature. This condition has been investigated by Suliciu{4] in the
one-dimensional case, for materials with internal state variables but using particular constitutive
assumptions that give the constitutive equation of heat flux a form which is close to Cattaneo’s
equation[6, 7]. The symmetry condition as well as certain informations on the equilibrium state
imply the existence of real acceleration waves in a neighborhood of an equilibrium state. Using
the same assumptions one proves that heat flux depends only on the internal state variables and
therefore, it has no jump across a shock wave; moreover, in the neighborhood of an equilibrium
state, the shock wave speed is close to the adiabatic sound speed.

Using the additional assumption that the equilibrium state is a strong equilibrium state in the
sense of Truesdell[8], Suliciu[5] finds similar results in the general one-dimensional theory of
materials with internal state variables.

The present work generalizes the above results to the general three-dimensional theory of
wave propagation through materials with internal state variables. The model used for such a
material is that of Coleman and Gurtin{1] with certain additional constitutive assumptions.
Moreover, internal state variables are chosen to be frame indifferent but at least a certain number
of these variables change under unimodular mappings of the reference configuration. Therefore,
internal state variables will somehow have a broader meaning here than that used by Coleman
and Gurtin[1] (see also Bowen[9], Bowen and Wang[10], Bowen and Chen[11]).

The hypothesis that heat flux does not explicitely depend on the temperature gradient brings
this model close to that of a material with fading memory due to Gurtin and Pipkin[3], and to the
Maxwell-Catteneo constitutive assumption. According to this hypothesis and to the assumption
that the evolution function of the internal state variables is linear in the temperature gradient, the
system of equations that describes thermodynamic processes in the body becomes quasilinear.
Two symmetry assumptions are laid down, concerning the wave speeds (Section 2) and the
mechanical amplitude of the wave (Section 2), for bodies with non-vanishing thermal dilatation at
a strong equilibrium state (condition (4.7)). The strong ellipticity condition together with the
above hypotheses lead to the conclusion that in the neighborhood of a strong equilibrium state
there are four real and symmetric possible acceleration waves, and at least two of them carry
jumps of the temperature derivatives. At a strong equilibrium state, the heat flux as well as its
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derivatives with respect to temperature and deformation gradient vanish. Therefore, the
propagation speeds of small amplitude shocks propagating over a strong equilibrium state are
close to the adiabatic sound speeds corresponding to that strong equilibrium state.

The isotropic linear theory is treated in the last two sections, in order to illustrate the above
mentioned results. One can see that heat flux becomes an internal (vector) state variable and
therefore, the Cattaneo constitutive equation becomes an evolution equation for this internal
state variable.

1. PRELIMINARIES

The notations we use in this work are mostly those of Coleman and Gurtin{1]. For an easier
reading, we reproduce them briefly.

The motion of a body & with respect to an initial reference configuration ® is described by
the function x = x(X, t), which is a one-to-one correspondence from X to x, where X € &, x gives
the coordinates in the actual configuration and ¢ is time. For simplicity one considers only
cartesian coordinates for X and x.

The quantities

F=Grady = (aX;) v= x—(—a%) (1.1

are called the deformation gradient and the particle velocity respectively. One usually assumes
that detF=J >0. )

We also use the following notations: T = (Tj) is the symmetric Cauchy stress tensor, S and §
given by

S =JT(F T = poS (1.2)

are the Piola~Kirchoff stress tensors, po is mass density in the reference configuration, e is the
specific internal energy, 7 is specific entropy, ¢ is temperature, 8 >0, ¢ defined as

Y =e—6n (1.3)

is the specific free energy,

a6

g (3)(.‘) gra
is the temperature gradient, q is the heat flux, & = (a1,..., a~) is the vector of internal state
variables and p is actual mass density.
Balance of mass is expressed by
po=pl. (1.5)

Balance of momentum and energy are given by

DivS+ Pob = poX, ai, +pobi = a!;f
' ] o i (1.6)
po(ll +po(07’ + 071)"S . F+Divq = pol
where b are body forces, r is the heat supply and
S M F = S}jR‘j
(L.7)

q=JF'q, go=Gradg= (;XGJ Fg.



Finite and symmetric thermomechanical waves in materials with internal state variables 561

The second law of thermodynamics is here expressed by Clausius-Duhem inequality

—Jz—né+—s F——l—oq 2=0. (1.8)

The constitutive assumptions are

(F, 6,8, a)
(F.0,ga)
(F, 6,8, a) (1.9
(F,0,g, a)
(F, 6,8, )

I
3 €

R & 3 &
non
=33 m)

1l
=ty

where all functions ¢, 4, §, § and f are as smooth as required by further calculations.
Inequality (1.8) imposes the following restrictions on the constitutive equations (1.9)
(Coleman and Gurtin[1)):

¥=§(F, 6, a)
= #(F, 0, a)=— "’(F 6, a) (1.10)

§=8(F. 6, &) = po “'(F 6, a).
We now make two additional constitutive assumptions

9q =0
ago(F, 0,8, a)

(1.11)
f(F, 6, go, a) = A(F, 6, a)go + b(F, 8, )

where A is a linear map given by an N X 3 matrix.

We did mention in the introduction that a are chosen to be frame indifferent. If they would
remain invariant under all mappings of the isotropy group too then hypothesis (1.11), will imply
§(F, 0,0, a) =0 for isotropic materials (see Truesdell and Noll[12], relation (96.22)). One
therefore has to assume that at least certain components of a do change under the isotropy group
of the material.

The above constitutive assumptions lead to a quasilinear partial differential system for the
unknown functions. For the one-dimensional case, these hypotheses have been laid down by
Perzyna and Kosifiski[2] and have been investigated by Suliciu[4, 5] in the frame of wave
symmetry and of Cattaneo’s hyperbolic heat conduction constitutive assumption[6, 7].

Inequality (1.8) and the constitutive assumptions (1.11) lead to

i(F, 0 m—wwﬁwoa)¢ 6, )
" (1.12)
Ll i <
aa(Faoaa) b(F,O,a)\O.

2. SYMMETRIC ACCELERATION WAVES

A regular surface ¢(X, t) =0, with X € ® and t € R will be called an acceleration wave if
v=x, F=Grad y, 8 and a are continuous across it but their derivatives with respect to X and ¢
have jump discontinuities when crossing this surface. It will be assumed that b and r have no
jumps across the wave.

The geometric and kinematic compatibility conditions that have to be satisfied by the
derivatives of v, F,  and a are (the reader unfamiliar with kinematic and dynamic compatibility
conditions is directed to Truesdell and Toupin[13] or, for their applications to different types of
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materials, to Coleman, Gurtin, Herrera and Truesdell[15])

7yl s aFk.]_ [aF] B

[ X ] Uz, [_ax,- = ann, [24] = ~van, @.1)
20 07
[at] — Uy, [-67]]—1/!1, (2.2)
aoa _ am —
l:'a—t:l— U‘Yi, [_axvj] Yih;. (23)

Here, n; are the components of the unit vector n, normal to the discontinuity surface, for a
fixed ¢, and called the direction of propagation, U is the speed of propagation of the discontinuity
surface and one has

n = (3¢/3X:)/|Grad ¢|, U = —(d¢/dt)/|Grad ¢|. (2.4)

a; are the components of the vector a, called the mechanical amplitude of the wave, the scalar
v is called the thermal amplitude of the wave and the N-dimensional vector y is called the
internal state amplitude of the wave.

According to (1.10),; and (1.12), one can write the following jump conditions

Ca FR FR FR
[Div 8} = po {aF,,aFk, Wiy +V 503k, ™ T 3P 7""’} 23)
my_ 3% 3 ., 3%
[at] = Usger, @t vUsgr ™ Uaoaak ¥ (26)
a4 q:
[Div 4] = aknm, + V;o; n; + — ykn. Q2.7

Using (2.5) and (2.1), in the above obtained dynamic compatibility condition (1.6),, we get

2%y % 8%
2, __O0Y
Ulai 3FyaFn agmn; + Vaan” n+ Fdan Yichj. (2.8)

From (2.6), (2.7) and (1.6); there results

% 3 % 1, 9 0% U, 80
poOUaan an; + 3Fa aknnl+p00V602 U+Vao ni 909 panak ')’k+aak nye =0
(2.9
while from (2.3), (1.9)s and (1.11), we find
U‘Yk + VAk,n; =0. (210)

For a fixed state (F, 6, @) and a given direction of propagation n, the system (2.8)-(2.10)
represents a homogeneous linear system of N + 4 equations with N + 4 unknowns: a, » and . It
will have a non-trivial solution if and only if its determinant vanishes.

In order to simplify the writing one may introduce the following notations

oM _ Y
Qu = 3F,9Fx m, v = —pob T 2.11)
-
p=2Y, 2.12)

305Fu
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23 A

D= a}“f—!’;’:; Aoning, E = -g—F—; e @)
2= -—%‘- Awhify, W= po% Aty poo?ﬁ‘”— Awhy + 3‘; (2.14)
L= ;;’: n, L= %%‘ n, M= Aun, 2.16)

The quantities Q = (Qy) and v/p, are called the homothermal acoustical tensor and the heat
capacity at constant strain and internal state variables, respectively.
By means of these notations the determinant of the system (2.8)-(2.10) is written as

Qu-— U? Q. Qi P, H, - Hin
Q2l sz— U2 st Pz H21 M HzN
Qn Q2 Qs— U? P, Hy, - Hi~
A= perP|+E1 poOUP2+E2 perP3+Es ~Uv+L UG+K: UGy +Kn
0 0 0 M, v - 0
0 0 0 My 0 . U

=UNY=oU*+ wU" + (vlg+ 2 + pobP - YU + [~wlg + P - (E— po8 D)1 U’
—(vllg+zIo+D - E+ pobIqP - P— o8 QP - PYU*
+[wllq+ IoP - (pofD —E)+ QP - (E — po6 D)1 U?
+[vlllq+ zIlg+ IoD - E— QD - E— poBIoQP - P+ poflIoP - P+ po68Q°P - PIU?
+[—willq+ IIoP - (E— po8D) + IoQP - (po8D — E) + Q°P - (E — po6D)IU
—zlllq+1QD -E—IIoD -E—(Q°D) - E} =0 .17

where Io, I, Hl, are the invariants of Q.

Equation (2.17) that determines the speed of propagation of acceleration waves has U =0 as
root of order N — 1 and this is due to the constitutive assumptions (1.9)s and (1.11). Acceleration
waves for which U =0 are called stationary acceleration waves.

From the physical point of view one expects to get symmetric acceleration waves, and
therefore symmetric roots for equation (2.17) (i.e. if U = U, is a root of equation (2.17) then
U =-U is a root too). If, in relation (2.17), which is a polynomial of degree N +7 in U, the
coefficient of U™ is different from zero, there will be only N — 1 roots that are equal to zero.
The remaining eight roots are generally neither real nor symmetric. We now lay down the
following constitutive assumption that leads to symmetric speeds of propagation.

Symmetry assumption I: For any fixed state (F, 6, a) and any fixed direction of propagation n,
the equation that gives the speeds of propagation of acceleration waves must admit symmetric
roots.

Symmetry assumption I is satisfied if and only if the following conditions

w=0

P-(E—pofD)=0

QP - (E-po6D)=0
QP (E- pofD) =0 2.18)

are verified for any state (F, 8, ) and any direction of propagation n. Under these conditions and
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denoting Z = U”, eqn (2.17) becomes

vZ* — (vlo+ 2 + pobP - P)Z* +{vllq+ 2l + D - E+ pof(IoP - P— QP - P)}Z>
—{vlllq+ 2o+ IoD - E—-QD-E

+pof(IIgP - P—1oQP - P+ QP - P)}Z + zIllq— 1oQD - E+ IIoD - E+ QD - E=0. (2.19)
Conditions (2.18).s can also be written as

P-W=0
QP-W=P - QW=0 (2.20)
QP -W=QP-QW=P-Q*W=0

where W = E — po6D. Therefore, if P and W are both different from zero then either P or W is an
eigenvector of Q. Let (F, 6, a) and n be fixed and let U? # 0 be a corresponding root of eqn (2.19).
From (2.10) and (2.16) one has

Yo =— -('} M. (2.21)

Using the notations {2.11)-(2.16), from (2.9} together with (2.18), and (2.21) one gets
(vU*—z)v = U(Upo8P+E) - a (2.22)

and from (2.8) and (2.21) there results

Ua—Qa= v(P— %—) 2.23)

We make now a second constitutive assumption concerning symmetry.

Symmetry assumption II: For a real acceleration wave that travels on direction n with the
mechanical amplitude a, U is a possible speed of propagation if and only if ~U is.

This symmetry assumption is automatically satisfied in case of a non-linear elastic material
(see Truesdell[14, 15], Section 2). We here require that the constitutive equations also verify such
an hypothesis in case of a material with internal state variables.

Suppose now that eqn (2.19) has a real root Z;>0; then, corresponding to Z,, the
homogeneous system (in a and v) (2.22)-(2.23) has the real solutions (a, v} and (&', »’) for
Us=+/Z, and —U, = —/Z, respectively. According to symmetry assumption II, if (a, v) is the
solution that corresponds to U = U,, (a, 7) must be the solution that corresponds to U = -U..
Therefore, from (2.22) and (2.23), there follows that

Wér—-2)y—-0)=2UE-a
(2.24)

- :7)P==—L%-l(v+ 5)D.

3. STRONG EQUILIBRIUM STATES. ELLIPTICITY CONDITION
(1) A state (F*, #*,g* =0, a*) is called an equilibrium state if

f*=1(F* 6*,0,a*)=0. (3.DH

If an equilibrium state satisfies the additional condition

WX _ W e ok wy
aak”aa.‘(F’o’a) 0 3.2)

it is said to be a strong equilibrium state. In the following, whenever we use a star as upper index
on a quantity, it means that the guantity refers to a strong equilibrium state.
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For a strong equilibriumm state, (1.12), implies

4*=g§(F*, 6%0,a")=0 (3.3)
| a2 (3.4)
A pgear Ty (3.5)
B ¢ popmar™Z¥ (3.6)

For further implications of the Clausius-Duhem inequality in case of a strong equilibrium
state see Bowen[9], Truesdell[8].

(2) The Clausius~-Duhem inequality, interpreted in the sense of Coleman and Noll[16],
imposes important restrictions on the form of the constitutive equations. For materials with
internal state variables these restrictions have been established by Coleman and Gurtin[1] (see
also Bowen[9]). However, these restrictions still allow the constitutive equations to remain too
general, so they may include certain effects that are inadmissible from the physical point of view.

In order to remove such undesirable effects in nonlinear elasticity, in the literature there are
proposed several so called adscititious inequalities (for a detailed discussion on this subject see
Truesdell and Noll[12}]).

In case of materials with internal state variables Bowen[9] suggests an inequality involving
the function ¢, an inequality of the same type as that of Coleman and Noll[17], and investigates
the consequences on equilibrium states and on the second order derivatives of the function §
with respect to its arguments. We here follow the same idea but impose on functions ¢ and f an
inequality of elliptic type. (See Hadamard[18)], Truesdell[14], and also Truesdell and Noll[12].) In
Section 4 will be seen the important consequences this inequality has for the propagation of
waves in the neighborhood of a strong equilibrium state.

We require that functions i and f be defined such that the inequality

$(F, 6, a) - §(F, 6,a)— (0 - §) 22 "’aaea)

lﬁ»;

—fr{(F F)

L, é&)} (a- a)a—“’( Ga)>0 (7

holds for any (F, 6,a), (F, §, @) with (F, 8, a) # (F, 6, &),
F=F+a®b, 0=A+6, a=a+1(F 6§,0,dc (3.8)
where a, b, ¢ are vectors in R® and X €R, that satisfy
{sgn (det F)} det (F + a®b) >0, A+4>0. (3.9
Inequality (3.7) implies that

3%y

Y ofe 2341 0% of of
9FydFu aibic: — A ¢ =0 (.10)

+
Iy 70° T Sanden g, g,

must be satisfied for any a, b, cE R?> and A €R. If (3.10) is a strict inequality, it is called the
strong ellipticity condition.
The strict inequality (3.10) has the following immediate consequences

0 aashb >0 G3.11)
aFyaF. !
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27 A
_%f=%>o (3.12)
.
O o of o 3.13)

daxday dgr 3gs

for any a, b, cER? and any state (F,0,g=0, a).
According to (3.11), the tensor Q given by (2.11), will be positive definite while (3.12) is nothing
else than
v >0. (3.14)

(3) We now present several results that hold for strong equilibrium states. Under hypothesis
(1.13), condition (3.13) together with (3.6) state that the quantity z defined by (2.14), is positive at
strong equilibrium states, i.e.

2*>0. (3.15)

The symmetry condition (2.18), written at a strong equilibrium state and (3.4) yield

9 _ wrd79*
26 0, A 300 0. (3.16)

Then, from (3.5) and (2.13) one gets
E* = —po0*D*, (3.17)
while (3.17) and (2.20), imply
P*.-D*=0 (3.18)

so, if P* # 0 and D* # 0, by (2.20) there results that either P* or D* are eigenvectors for Q*.

4. REAL ACCELERATION WAVES

We will prove that in the neighborhood of a strong equilibrium state, under the above stated
symmetry and strong ellipticity hypotheses, all acceleration waves are real.

We show first that, at strong equilibrium states, symmetry assumption I and the strong
ellipticity hypothesis imply there exists a symmetric matrix R =(Ry)i;—:,. 4+ such that its
characteristic equation

detR-ZD)=0 4.1)

coincides with eqn (2.19). Hence all the roots of (2.19) will be real for any direction of propagation
n
We choose
Ra = A6, k1=1,2,3 4.2)

where A%, k=1,2,3 are the eigenvalues of Q*. The remaining components Ri:= R,
i=1,2,3,4, will be determined in order to make eqn (4.1) coincide with eqn (2.19). One gets

Ru= % (2% + pof*P* - P¥) (4.3)
and
*
R¥4+R§4+R§4=BZ—0;(Q*P* -P*+D*-D*)
*
ATR%L+A$RL+A3RL = ”Z—ﬂ (Q*?P* - P* + Q*D* - D¥) 4.4)

*
APRLU+APRL+APRYL= 3:’72— (Q¥’P* - P*+ Q**D* - D*),
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As there exists an orthonormal basis in R> consisting of the eigenvectors of Q¥*, then, by
writing Q*, P* and D* in this new basis one immediately gets

*
=2 atPr4 D), =123 @“5)

where P* and D* are the components of P* amd D* respectively, with respect to the new basis.
Nowlet Z*,i = 1,2, 3, 4 be the four real roots of eqn (2.19). From (3.14) and (3.15) one has

ZT+Z¥+Z§‘+ZT=IQ.+;1;(z*+p00*P*-P*)>0, (4.6)

hence at least one of the Z% is positive, say Zt = U¥* > 0. Then, corresponding to the speed of

propagation U, there exists a real solution (a¥, v%, ¥1) of the homogeneous system (2.8)-(2.10).
Since in linear thermoelasticity P is directed along the normal n and its length is equal to the

stress-temperature modulus divided by po6* (see Section 6), one may assume that for any strong
equilibrium state and any direction of propagation,

P*#0. 4.7

In linear thermoelasticity P is an eigenvector of Q.
From (2.24) written for a strong equilibrium state and multiplied by P, from (3.18) and (4.7)
there follows

vi=p¥ 4.8)
and
viID*=0. 4.9

Equality (4.8) says that, at strong equilibrium states, the strong ellipticity condition, the
symmetry assumptions I and II and hypothesis (4.7) require the thermal amplitude to have the
same symmetry property as the mechanical amplitude.

From (2.23), (4.7) and (4.9) one can see that the thermal amplitude of the wave v* vanishes if
and only if the mechanical amplitude a* is an eigenvector of Q*.

According to (4.9), if there exists at least one non-zero thermal amplitude »*, one has D* = 0.
Let us therefore investigate what happens when all »* vanish.

If »* =0, at will be an eigenvector of Q* for the eigenvalue U¥>. Denoting by A*, A%, A% the
cigenvalues of Q*, one has Ut = A 1. Relation (4.6) will imply now the existence of another
positive root for (2.19), say Z% > 0. There are two cases: (a) Z$ = Z¥ = A%,i.e. Z = At isa double
root for eqn (2.19) but not a double eigenvalue for Q* and (b) Z¥# At or Z¥=Atbut Atisa
double eigenvalue of Q*.

For case (b), following again the above procedure, if v3 = 0, there results Z¥ = A% (A% being
possibly equal to A¥) and from (4.6) we get Z% > 0. One faces again the two cases (a) and (b).
Suppose we are in case (b): if ¥3=0 then Z% =A%, hence Z%=(z*+ po6*P*-P*)/v*. But
Z¥=At%,i=1,2,3 and thus, according to eqn (2.19), one must have D* - D* + Q*P* - P* = 0 and
therefore D* =0 and P* =0 which contradicts hypothesis (4.7).

In case (a), in order to simplify the calculations, let us write the system (2.22)-(2.23) in that
orthogonal basis consisting only of the eigenvectors of Q*; since Z = At is a double root of eqn
(2.19), for U? = AT we get P* =0 (where P* denote the components of P* in the new basis) and
the solutions of the system (2.22)-(2.23) will be

(aﬁ PY . ATPf u*) 4.10)

AT—2% T

Hence, there exist such solutions for which »* # 0.
If U*=A¥ is a triple solution for eqn (2.19) but only a double eigenvalue of Q*, then
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P¥=P%=0 and the solutions of the system (2.22)-(2.23) have the form

v*P}%
(a’l‘, a%, AP V*) 4.11)

and the same conclusion as in the previous case follows.

Therefore, if the hypotheses (1.13), (4.7), the symmetry assumptions I and II, and the strong
ellipticity condition are satisfied then, for any direction of propagation n and any strong
equilibrium state, eqn (2.19) can not have three roots that are eigenvalues of Q*, and

D*=0, E*=0. 4.12)

Now, (3.11), (3.14), (3.15) and (4.12) imply that, at strong equilibrium states, all four roots of
eqn (2.19) are real and positive. That is, for any direction of propagation n, in the neigh-
borhood of any strong equilibrium state, there exist four real speeds of propagation U% >0,
i =1,...,4 and four amplitudes of the wave (a%, v¥), i = 1,.. ., 4, respectively. At least two of the
four waves carry jumps of the temperature derivatives.

According to (4.12), at a strong equilibrium state we may write the eqn (2.19) and the system
(2.22)-(2.23) as follows

v *Z‘ - (U*IQ* +z*+ p00 *pk . P*)23 + [v*IIQ- + Z*IQ‘ + p00 *(IQ*P* PpE— Q*P* . P*)]Zz
—[v*IHge + 2*Hge + po@ ¥ (I goP* - P* — [0oQ*P* - P*+ Q¥°P* - PHIZ + 2* (- =0  (4.13)

and
(V*U* — 2% p* = pog *P* - g*

(4.14)
U*a* — Q*a* = p*P*,

5. HEAT FLUX IN THE NEIGHBORHOOD OF A STRONG EQUILIBRIUM STATE

Under assumption (1.11),, the principle of frame-indifference (see Coleman and Gurtin[1],
relation (12.4),), implies that the response function that determines q can be written as

a=4(F, 6,0)=Fq"(C, 0, @) 5.1)

where C =F"F. Then (1.7), yields
4=4(F,0,a)=J§"(C,8,a)=§(C, 6, a) (5.2)
i.e. the response function ¢ depends on the deformation gradient only by means of the right

Cauchy-Green strain tensor C.
We will show in the following that for strong equilibrium states

L
=0 (.3

Indeed, from (2.13), and (4.12), there follows

4% + gt
aF;  3Fx

= 0. (5.4)

From (5.2) one has

aqt _, adt o,
3F, _.26‘(}1 F*% 5.5
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and using (5.5) in (5.4) we get

0Cy  3Cx (5.6
Since Cys = Cj;, (5.6) yields
8% o g
3Gy =0, i, k=123 5.7
and (5.3) follows immediately.
Relations (3.5) and (5.3) imply
P e o i
3F, 0 A% =0, ijk=1,2,3 (5.8)

Therefore, taking into account (1.12)y, (3.16): and (5.3) we may write in the neighborhood of a
strong equilibrium state

Q(F, 0,00 =201 (0, —at) + 0(F - F¥ 410 - 0%+ | - a¥). (5.9)

k

We thus obtained the following result: in the neighborhood of a strong equilibrium state the
heat flux can be approximated by a function depending on internal state variables only.

Now, conversely, if at a strong equilibrium state the partial derivatives of q with respect to F
and 0 vanish then, for that strong equilibrium state, the symmetry hypotheses I and II are satisfied.
This follows immediately if one uses relations (3.4) and (3.5) in (2.22), (2.23) and (2.17).

6. THE LINEAR THEORY

As an application of the previous considerations, we discuss here the implications of our
assumptions for the linear theory.
Suppose (F=1, 8 = 6, g=0, a = a’) is a strong equilibrium state and

g*=0, n*=0, $*=0. 6.1)

Moreover, the material is assumed isotropic. Under an orthogonal mapping H of the isotropy
group, the heat flux q defined by (1.7), becomes H" §. For purpose of illustration only we will
assume here the first three components of the vector a of internal state variables to behave, under
H, like ¢, while the other components remain invariant ie. we assume the following
decomposition of a

a = (B, B2, B3, sy . . ., an) = (B, @) (6.2)
where
B-H'B, a-a (6.3)
We introduce the symmetric strain tensor € defined as
2ey = Fy + F; — 28y 6.4
According to (6.3), and to material frame indifference and isotropy, the free energy becomes
an isotropic function of the tensor B=FF" and the vector 8 (see for instance Truesdell and

Noll[12], Section 11). Moreover, if

(E.‘jé.‘j)”2< 1, |0 - 90'/00< 1, |a —a°| <1,
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the free energy JJ(F, 6, @) = (€, 6, a) can be written in the neighborhood of a strong equilibrium
state as

pol/;(ﬁ, 0, a) = ‘;‘ {Afgr'*' 2p€u€u "20_:(0 - 00)€n “020 (0 - 00)2 —'92; (0 - oo)Ak (ak - ako) +
+2enTi(ax — )+ Aui(ox — ) an — azo)} 6.5)

where A and u are Lammé constants, k /6o is the stress-temperature modulus, v/, is the heat
capacity and Iy, Ax and Ay are defined as

aY* _
Po 3Fua = 51} Fk (66)
*y* _
poOo m = _Ak (67)
>
Po m = A (6.8)

Alloconstants in (6.5)~(6.8) are calculated at the strong equilibrium state (F=1, 6 = 6, g=0,
* =Fcr'01)1.1 (3.16), and (5.8) there follows
A% =0, AAti=0, i=1,2,3 6.9)
respectively.

Since tl}e free energy  is given as a function of € = (¢y), 6 and a, relations (1.10),; will
determine S and #:

Su = €Oy + 26y *’—0"(; (0 — 60)8y + i (an — a8y (6.10)

pofoi] = Kér + v(8 — o) + Ax{ax — ad). 6.11)

The internal energy has the following expression

po€ = poil; + poi} = K€, + (8 — 0o) + A ax — a’) +% {/\637-*- pA 'i-‘o2 (8 — 6o
' 0
+ 26 Te(an — o) + Awe(e — ) — a,")}. 6.12)

As we proved in the previous section, in the neighborhood of a strong equilibrium state the
heat flux can be approximated by a linear function of the internal state variables (see (5.9))

qi (E, 0, a) = g'z—; (ak - ako). (6.13)

Taking into account (6.3) and (6.13) q is an isotropic vector function of one vector only, therefore

a=-v(8-B°
6.14)
3_41‘._.0, i=1,2,3, k=4,.. N
dax

where vy is a constant.
By using decomposition (6.2)-(6.3) and hypothesis (1.11), the evolution eqn (1.9)s can be
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decomposed as follows
Bi=Augox thy i=1,2,3 (6.15)
@ = Apgoc + b, j=4,..,N. (6.16)

The vector valued functions b= (b, b2, bs) and Ago = (A xZox, A2xBok, A3xQok) are isotropic
functions of a symmetric tensor and a vector (see Truesdell and Noll[12], Section 13).
Linearization in the neighborhood of the strong equilibrium state as well as isotropy lead to the
following form of eqn (6.15)

Bi = Agoi +5(B8 — B 6.17)

where A and & are constants.
Since we did assume &, j =4,..., N to be scalars, the same argument as above leads to

Afe=Abk, A% =0, k=123, j=4,..,N 6.18)

while b;,j =4,..., N donot depend on B — B° and are linear functions of the first invariant e, of
€, of 6 — 6o and & —ako, k =4,...,N.
According to (6.14), the evolution eqn (6.17) becomes

1. 8.

74 Ago+yq- 6.19)
Equation (6.19) is nothing else than Cattaneo’s hyperbolic heat conduction equation [6, 7). Thus,
in the linear theory, the heat flux is an internal state variable and Cattaneo’s equation represents
an evolution equation for the heat flux. Similar conclusions have been reached by Suliciu[4] in the
one-dimensional case by using another hypothesis instead of the strong equilibrium state
assumption. It is obvious that for slow processes eqn (6.19) can be approximated by Fourier's
constitutive equation.

From (6.18) and (6.9) one gets

[«=0, A=0, k=1,2,3 (6.20)
and from (2.14),, (6.14) and (6.18) one has
z* = yA, 6.21)

Now, let us write in this case the eqn (4.13) that gives the speeds of propagation. From (6.5),
(2.11); and (2.12) we obtain

poQs ={A + pimn; + udy, P¥=- K n. V (6.22)
poGo
By using (6.22), eqn (4.13) becomes
(Z — a2V{Z7 — (@’ + a’ + ad)Z + acza["'} =0 (6.23)

where a; and a, are the speeds of propagation of the longitudinal and transversal mechanical
acceleration waves respectively, a. will be called the Cattaneo speed of propagation of thermal
acceleration waves and as is a thermomechanical coupling coefficient. These quantities are
defined by

(6.24)
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If Z =a’ and a, denotes the eigenvector of Q* that corresponds to the eigenvalue a2, then
a. - n =0 and, according to (4.12) and (6.22), (a., v = 0) is a solution of the system (2.22)-(2.23),
Thus, in the isotropic linear theory, for any direction of propagation n, two transversal
acceleration waves can exist, for which only the mechanical amplitude is non-zero, the same as for
the purely mechanical case.

For Z# a’ the system (2.22)-(2.23) that gives the wave amplitude (a, v} can be written,
according to (4.12) and (6.22), as

(Z*—al)v =—;K;Z*(a-n)

At uw ) _ K
L IO . L. g i=— N
Z*g ( 20 (a-mn -+ P & ol v
There follows
{Z¥—(a’+ a2+ aDZ*+ +ala’Na - n)=(Z*~ a’Xa. - a,) (6.25)

where a is the component of a that is orthogonal to n. Hence, if Z*=Z*# a4’ is a root of eqn
(6.23), then a, =0 and one has a longitudinal wave.

Therefore, for any given direction n there always can be two transversal waves that propagate
with the speed

2. M
U po (6.26)
which does not depend on direction n, and that carry no thermal jumps as v = 0.
If :
(A +p)z*¢u((;\+mv*+éﬁ), 6.27)
(4]

ie. u/po is not a triple root for (6.12), then for any direction n there can always exist two
longitudinal waves whose speeds of propagation are the roots of equation

U—(a’+ al+aHU*+ala’ =0. 6.28)

If as# 0 or, equivalently, if condition (4.7) is satisfied, longitudinal acceleration waves will be
coupled, i.e. both mechanical and thermal amplitudes, a and v respectively, are different from zero.
If (6.27) does not hold, i.e. U* = u/po is a root of eqn (6.28) then, as one can see from (6.25)
and (4.11), the wave is generally neither longitudinal nor transversal.
As we have shown in Section 3, inequality (3.13) implies z* > 0. If one assumes that the left
hand side of (3.13) vanishes for any ¢ € R’ then z* =0 for any n € R>; the converse is also true.
z*=0 will imply a. =0 and (6.28) has a root U? =0 while the other one is given by

U¥=a’+ad (6.29)

U* is sometimes called the adiabatic sound speed of propagation. Condition z* = 0 will impose
certain restriction on the way ¢ and ¢ depend on « but however, this does not imply that
3G 3 =0 and Aw =0.

Even for the nonlinear case, if z* = 0 at a strong equilibrium state, from (2.22) and (2.23) one
obtains

Ak
U*a=Qra+ L8 @+ b+ (6.30)
The tensor
Q=Q+%°§P®P 6.31)

is called the adiabatic acoustic tensor.
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Similar conclusions are reached in the theory of wave propagation in materials with fading
memory (see Coleman and Gurtin{15], IV) if one assumes that the material is a non-conductor,
i.e. § = 0; for materials with internal state variables see also Bowen and Wang[10] and Bowen and
Chem[11].

7. SHOCK WAVES

(1) A smooth surface ¥, of equation (X, t) = 0,X € R (where & is the reference configuration
of the body 2) is called a shock wave if the function x = y (X, t) which describes the motion is
continuous in (X, ¢) in the whole domain of definition but its derivatives F = 3y /X, v = dy /3t and
the temperature 8 have jumps across 3, remaining continuous outside 3.

If the surface 3. is regular at (X, t), i.e. Grad ¢ # 0 then, when crossing the surface at point
(X, t) the following kinematic and dynamic compatibility conditions are satisfied (see Truesdell
and Toupin[13], relations (189.1) as well as relations (205.3), (241.5) and (258.4) written in the initial
reference configuration and using Piola—Kirchoff stress tensor).

[Fq] = ain, [Ui] =—Sa; (71)
polv:i1S +1Sy1n =0 (7.2)

Po [e +%J S+ {vigij - é,-}n,- =0 (7.3)
poSIn]+ [%‘] =0 (71.4)

where S =—(3¢/dt)/|Grad ¢| is called the speed of propagation of the shock wave, n
(n = (3¢]3X:)/|Grad ol) is the normal to 3, in & for a fixed t and a is the mechanical amplitude of
the wave.

The evolution eqgn (1.9)s determines a(t), for a fixed initial condition and a fixed XE R, as a
continuous function of t, for any F(t), 0(t), g(t), regulated functions of t, t = t, (i.¢. functions that
for any t have left and right-side limits).

Now, applying a similar result to Proposition 2.5 of Suliciu[19] there follows that [a]=0
across 3 if S#0. The jumps of all quantities S, e, n and q are therefore determined only by the
jumps of ¥, 8 and g, if S#0.

The definition of an acceleration wave we have given at the beginning of Section 2 assumes «
continuous. The same argument as that used above shows that & is continuous across any
discontinuity surface for which U # 0. Therefore, in the definition of an acceleration wave, it is
necessary to assume only the continuity of @ across stationary waves, i.e. those discontinuity
surfaces for which U =0.

From (7.1)-(7.3), by elimination of [v] and a, one gets

s{pdle1 -3 S5+ SilFulnin~14m =0 .5)
and

o_ LSl SicInin

2
po'S [Fyl[Falnm

(7.6)

Now, if the normal n and the values F*, * and « in front of the shock wave are fixed and
hypothesis (1.11) is verified then, between the values F~ and 8~ beyond the shock wave there
exists a relation determined by (7.5), (7.6) and the constitutive eqns (1.10) and (1.12),. In the
one-dimensional case this type of relation is called the Hugoniot relation.

(2) In the linear case, since the internal state variables do not jump across disconstinuity
surfaces with S#0, from (6.14) there follows

[g]=0. 7.7
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Using (6.10)6.12) to express Sy, % and é and the jump relations (7.1), and (7.7), from (7.5)
one obtains a relation between the mechanical amplitude and the thermal amplitude.

v[f]+ k(a-n)=0. (7.8)
Together with (6.11), (7.8) implies
[7]1=0. (7.9)

Therefore, in case of the linear theory with internal state variables as in usual linear
thermoelasticity (under the assumption that the material is non-conductor) all shocks are both
adiabatic and isentropic.

From (7.1), (7.2), (6.10) and (7.8) one obtains

2

{(,\ but 5"—0) iy + (- pOSZ)&,-} =0, (7.10)
0

Equation (7.10) that gives the mechanical amplitude of the shock wave in the fixed direction of
propagation n has non-trivial solutions only for those S> which satisfy the equation

(S*-a’)(S*~a’—as)=0. (7.11)

Thus, we reached the following conclusions: there can exist two types of shock waves, the
same as for a non-conductor material: a double transversal wave across which temperature has
no jump and a longitudinal wave that propagates with the adiabatic sound speed (6.29) and
across which both mechanical and thermal amplitudes are different from zero.

If one denotes by U#* and U¥?, U¥ < U¥* the two roots of eqn (6.28) then the following
inequality

U¥<a’<U¥<U¥ (7.12)

holds. This inequality that relates the propagation speeds of longitudinal shock and acceleration
waves has the same form as the inequality obtained by Suliciu[4] for the one-dimensional case.
He has shown that in case of impacting an undeformed elastic bar at rest, at room temperature
8o, with a bar that moves against it with velocity V, and has temperature 6o # 6, and strain €, # 0,
shock and acceleration waves will propagate in both bars. The first one to propagate will be an
acceleration wave that has propagation speed U%, then a shock wave of speed U* followed by an
acceleration wave of speed U*.

The above picture describing time and space variation of thermomechanical quantities is
similar to that given by usual linear thermoelasticity when for the heat flux one adopts a law of
Fourier type (see Danilovskaia[20] and also Boley and Weiner[21], Chap. I).

The essential difference between the two cases lies in the fact that here the perturbation in
front of the shock wave propagates with a finite speed.
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